Logic Resolution in First-order logic

Few laws related to propositional knowledge are stated below:

(i)	Idempotency	:	P∨P=P
		;	P∧P=P
(ii)	Commutative law	:	P∨Q=Q∨P
		:	$P \land Q = Q \land P$
		:	$P \leftrightarrow Q = Q \leftrightarrow P$
(iii)	Associative law	:	$(P \lor Q) \lor R = P \lor (Q \lor R)$
		:	$(P \land Q) \land R = P \land (Q \land R)$
(iv)	Distributive law	:	$P \land (Q \lor R) = (P \land Q) \lor (P \land R)$
		1	$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$
(v)	De Morgan's rule	:	$\sim (P \lor Q) = \sim P \land \sim Q$
		:	$\sim (P \land Q) = \sim P \lor \sim Q$
(vi)	Implication removal	:	$P \leftrightarrow Q = \sim P \lor Q$
(vii)	Biconditional elimination	:	$P \rightarrow Q = (P \rightarrow Q) \land (Q \rightarrow P)$
(viii)	Absorption law	÷	$P \lor (P \land Q) \equiv P, P \land (P \lor Q) \equiv P$
(ix)	Contrapositive	:	$P \Longrightarrow Q \equiv \neg Q \Longrightarrow \neg P$
(x)	Double negation	:	$P \equiv \neg (\neg P)$
(xi)	Fundamental	:	(a) $P \lor \neg P \equiv T$
	identities		(b) $P \land \neg P \equiv F$
			(c) $P \lor T \equiv T$
			(d) $P \lor T \equiv P P \land T = P$
			(e) $P \lor F \equiv P$
			(f) $P \lor F \equiv F P \land F \equiv P$
			(g) $(P \Rightarrow Q) \land (P \Rightarrow \neg Q) \equiv \neg P$
			(h) $P \Rightarrow Q \equiv (\neg P \lor Q)$

Properties of Statements

- Valid
- Satisfiable
- Unsatisfiable
- Equivalence
- Logical Consequence

Properties of Statements

moving ahead, let us discusses some properties of propositional calculus ments or WFFs described as follows:

- **Valid**: A sentence is valid, if it is true for all values of inputs or for every interpretation. An all true statement is also called tautology. For example, $P \lor \neg P$ is valid since every interpretation of P results in a true value for $P \lor \neg P$.
- Satisfiable: A statement having at least one interpretation for which it is true, is called Satisfiable. For example, if statement P is Satisfiable, it will have at least one interpretation of P for which the value of P is true. However, P will not necessarily be valid because it is not true for every interpretation of P i.e., a value F for P will result in a value F for sentence P.
- **Unsatisfiable** (or contradiction): A statement or preposition is called Unsatisfiable if there is no interpretation for which it is true. For example, $P \land \neg P$ is unsatisfiable because it is false for every interpretation of P. **Equivalence**: Two statements s_1 and s_2 are equivalent if for every interpretation they have the same truth-value. For example, two statements P and $\neg (\neg P)$ are equivalent since both have the same truth-value for every interpretation of P.
- **Logical consequence:** Statement s_2 is said to be logical consequence of s_1 , if it is satisfied by all interpretations which satisfy s_1 . For example, out of given two sentences P and PAQ, P is said to be logical consequence of PAQ because for every interpretation for which PAQ is true, P is also true.

Inference in Propositional Logic

• Addition: From a given statement P, infer $P \lor Q$, where Q can be an other statement. This is also written as:

$$\frac{P}{\therefore (P \lor Q)}$$

For example,

Given : Adwet is an obedient boy

Conclude : Adwet is an obedient boy or Sushant is a lazy boy

This rule can be represented in implication form as $P \rightarrow (P \lor Q)$.

 Conjunction: From given two sentences or statements P and Q, infer PAC or:

$$\begin{array}{c} P \\ Q \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{pmatrix} (P \land Q)$$

For example,

- Given : Vishal is an intelligent student
- And : Shyam is a good player
- Conclude : Vishal is an intelligent student and Shyam is a good player

Implication form of this rule is represented as $P \land Q \rightarrow (P \land Q)$. Simplification: From given sentence $P \land Q$, infer P, or:

> $P \land Q$ $\therefore P$

For example,

Given : Kate is a beautiful woman and John is an ugly man Conclude : Kate is a beautiful woman

This rule can be represented in implication form as $(P \land Q) \rightarrow P$. **Modus Ponens**: From given two statements P and $P \rightarrow Q$, infer Q. This is also written as:

 $\begin{array}{c} P \\ \underline{P \rightarrow Q} \\ \therefore Q \end{array}$

For example:

given : Adwet is intelligent and : Adwet is intelligent \rightarrow Adwet tops the class conclude : Adwet tops the class

conclude : Adwet tops the cla

This rule is written in implication form as $(P \land (P \rightarrow Q)) \rightarrow Q$. **Modus tollens:** From the two given statements $\neg Q$ and $(P \rightarrow Q)$, infer $\neg P$,

 $\neg Q \\ P \rightarrow Q$

∴ ¬P

For example,

Given : Justin is not a religious person

And : Justin goes to church daily implies Justin is a religious person Conclude : Justin does not go to church daily Implication form of this rule is represented as $(\neg Q \land (P \rightarrow Q)) \rightarrow \neg P$.

Chain rule or Hypothetical Syllogism: From $(P \to Q)$ and $(Q \to R)$, infer $(P \to R)$, or

$$\begin{array}{c}
P \to Q \\
Q \to R \\
\hline
\vdots (P \to R)
\end{array}$$

For example,

Grven: India has natural resources → India can generate energyAnd: India can generate energy → India is prosperous countryConclude: India is prosperous country

This rule is represented in implication form as $((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$.

Disjunctive syllogism: From two given sentences ¬P and (P ∨ Q), infer Q, or:

For example,

Given : Mohit is not a laborious boy

And : Mohit is a laborious boy or Suchi is an honest girl

Conclude : Suchi is an honest girl

Implication form of this rule is written as $(\neg P \land (P \lor Q)) \rightarrow Q$.

• Constructive dilemma: From given two sentences $((P \rightarrow Q) \land (R \rightarrow S))$ and $(P \lor R)$, infer $(Q \lor S)$, or:

$$(P \rightarrow Q) \land (R \rightarrow S)$$
$$P \lor R$$
$$\therefore (Q \lor S)$$

For example,

Forevenuela

Given : (Bret loves Kate implies Kate loves Bret) and (Jash hates Sustimplies Sushi hates Jash)

And : Bret loves Kate or Jash hates Sushi

Conclude : Kate loves Bret or Sushi hates Jash

This rule is represented in implication form as $(((P \rightarrow Q) \land (R \rightarrow S)) \land (P \lor \mathbb{R}) \rightarrow (Q \lor S).$

Destructive dilemma: From given two sentences $((P \rightarrow Q) \land (R \rightarrow S)) \implies (\neg Q \lor \neg S)$, infer $(P \lor R)$, or:

$$(P \rightarrow Q) \land (R \rightarrow S)$$
$$\neg Q \lor \neg S$$
$$\vdots (P \lor R)$$

i or examp	ne,	
Given	:	Albart scored 85% marks implies Albart is an intellige student and Steffi scored 54% marks implies Steffi is weak student
and	1	Albart is not an intelligent student or Steffi is not a weat
conclude	:	Albart scored 85% marks or Steffi scored 54% marks

Assignment

1	 Find the truth value of following propositions: (i) If 2 is not an integer, then ½ is an integer. (ii) If 2 is an integer, then ½ is an integer.
2	 Translate the following sentences into propositional forms: (a) If it is not raining and I have time, then I will go to a movie. (b) If it is raining and I will not go to a movie. (c) It is not raining. (d) I will not go to a movie. (e) I will not go to a movie only if it is not raining.
3	If P, Q, R are the propositions, defined as above. Write the sentences in English corresponding to the following propositional forms: (i) $(\neg P \land Q) \leftrightarrow R$ (ii) $(Q \rightarrow R) \land (R \rightarrow Q)$ (iii) $\neg (Q \lor R)$ (iv) $R \rightarrow \neg P \land Q$

Without using truth tables, prove that $\neg(p\rightarrow q) \rightarrow \neg q$ is a tautology.

Resolution

Truth Table						
Ρ	Q	Conjunction AND P A Q	Disjunction OR P v Q	Negation NOT P ~P		
Т	Т	Т	т	F		
Т	F	F	Т	F		
F	Т	F	Т	Т		
F	F	F	F	Т		

- Variable: A variable is simply a letter that can be either true or false.
- Literal: A literal is either a variable or the negation of a variable.
- Sum and Product: A disjunction of literals is called a sum and a conjunction of literals is called a product.
- Clause: A clause is a disjunction of literals.

Clauses are usually written as follows, where the symbols l_i are literals:

 $l_1 \lor \cdots \lor l_n$

Horn Clause

- A Horn clause is a clause (a disjunction of literals) with at most one positive literal. $\neg p \lor \neg q \lor \dots \lor \neg t$ $\lor u$
- Conversely, a disjunction of literals with at most one negated literal is called a **dual-Horn clause**.
- A Horn clause with exactly one positive literal is a **definite clause** or a **strict Horn clause**.
- a definite clause with no negative literals is a **unit clause**
- a unit clause without variables is a **fact**;
- A Horn clause without a positive literal is a **goal clause**.
- Note that the empty clause, consisting of no literals (which is equivalent to false) is a goal clause.

Resolution

Disjunctive Normal Forms (DNF):

A formula which is equivalent to a given formula and which consists of a **<u>sum</u>** of elementary products is called a disjunctive normal form of given formula.

Example : (P $\land \sim$ Q) V (Q \land R) V (\sim P \land Q $\land \sim$ R)

Conjunctive Normal Form (CNF):

A formula which is equivalent to a given formula and which consists of a **product** of elementary products is called a conjunctive normal form of given formula.

Example :
$$(P \sim V Q) \land (Q \vee R) \land (\sim P \vee Q \vee \sim R)$$

If every elementary sum in CNF is tautology, then given formula is also tautology.

Principle Disjunctive Normal Form (PDNF) :

An equivalent formula consisting of **disjunctions of minterms** only is called the principle disjunctive normal form of the formula.

It is also known as **sum-of-products** canonical form.

Example: ($P \land \sim Q \land \sim R$) \lor ($P \land \sim Q \land R$) \lor ($\sim P \land \sim Q \land \sim R$)

- The minterm consists of conjunctions in which each statement variable or its negation, but not both, appears only once.
- The minterms are written down by including the variable if its truth value is T and its negation if its truth value is F.

Principle Conjunctive Normal Form (PCNF) :

An equivalent formula consisting of **conjunctions of maxterms** only is called the principle conjunctive normal form of the formula. It is also known as product-of-sums canonical form.

Example : (P V ~ Q V ~ R) \land (P V ~ Q V R) \land (~ P V ~ Q V ~ R)

- The maxterm consists of disjunctions in which each variable or its negation, but not both, appears only once.
- The dual of a minterm is called a maxterm.
- Each of the maxterm has the truth value F for exactly one combination of the truth values of the variables.
- The maxterms are written down by including the variable if its truth value is F and its negation if its truth value is T.

Resolution Proof Example.

- (a) Marcus was a man.
- (b) Marcus was a Roman.
- (c) All men are people.
- (d) Caesar was a ruler.
- (e) All Romans were either loyal to Caesar or hated him (or both).
- (f) Everyone is loyal to someone.
- (g) People only try to assassinate rulers they are not loyal to.
- (h) Marcus tried to assassinate Caesar.

Steps to Convert to CNF (Conjunctive Normal Form)

CNF

In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an **AND of ORs**. As a canonical normal form, it is useful in automated theorem proving and circuit theory.

A sentence expressed as a **conjunction of disjunctions of literals** is said to be in **Conjunctive normal Form** or CNF.

Examples and non-examples

All of the following formulas in the variables A, B, C, D, E, and F are in conjunctive normal form:

$$ullet (A ee
eg B ee
eg C) \wedge (
eg D ee E ee F)$$

 $ullet (A ee B) \wedge (C)$

The following formulas are **not** in conjunctive normal form:

- $egreen (B \lor C)$, since an OR is nested within a NOT
- $\bullet \left(A \wedge B \right) \vee C$

Steps to Convert to CNF

Step 1: Eliminate Biconditionale and Implications: * Eliminate - , replacing P-2 with (IP V2) * Eliminate . , replacing Par & with $(P \rightarrow Q) \land (Q \rightarrow P)$ = [TPYQ] A [TQVP] <u>step2</u>: Move all Negetions (-) -inwards. $- \neg \left(\forall x P g \right) \equiv \exists x \neg P (x)$ $\cdot \neg (\exists x P(x)) \equiv \forall x \neg P(x)$ · ¬(PVQ) = 7PA 7Q PAQ = PV7QP(x) = P(x)step3: Standardize Variables apart by renaming them: each quantifier should use a different variable.

Conversion For to CNF

For sontenere like (Vx (P(x)) V (∃x Q(x))) Which Use the some variable name to ice, change the name of one of the variables.

Steps to Convert to CNF

<u>Step4</u>. Sho lemize: Each existential Variables -is replaced by a <u>Skolem Constant</u> or Skolem function of enclosing Universally quantified variables. * For instance, [Ix Rich(x) be comes Rich(G1) Where G1 is a new Skolem constant * "Everyone has a heart" Vx Person (2) -> = = Heart () AHas (2) be comes, VX Person (x) - Heart (H(x)) A Has(x, H(x)) -where H is a new symbol (skolem function) Step 5: Drop chiversal Quantifiers. * For instance, Vx Person (x) becomes Person(x) <u>Steps</u>: Dristribute A over V: * $(PAQ) \lor S \equiv (PVS) \land (QVS)$

Example 1:

Assume the following facts: i. Steve likes a easy courses. -1: Science courses are herd. -iii. All the courses in the basket wearing department Iv. BK301 is a basket Dearing Course. use resolution to answer the question: "What course would steine like"

Example 1: Solution

Assume the following facts . i. Steve likes a easy courses. Hi. Science courses are hard. iii. All the courses in the basket wearing department are easy. IV. BK301 -is a basket Deaving Course. -use resolution to answer the question: "What course would steine like?"

Convert into FOL:

i Va easy (2) - likes (stere, x) Vn Science (2) - O TRasy(2) i. iii. Va basketwearing (2) -> easy(2) iv. basket wearing (BK 301) The conclusion is encoded as'. I likes (Steve, 2)

Convert into CNF:

- i. –i easy(2) × likes(stere, 2) -ii. – Science (2) × 7-easy(2)
- Tii. Tbasketwearing (2) V easy (2)
- iv. basketwearing (BK 301

Example 1: Solution

Convert into CNF:

X 🖨 B 🗷

Convert to First order Logic

- (a) Marcus was a man.
- (b) Marcus was a Roman.
- (c) All men are people.
- (d) Caesar was a ruler.
- (e) All Romans were either loyal to Caesar or hated him (or both).
- (f) Everyone is loyal to someone.
- (g) People only try to assassinate rulers they are not loyal to.
- (h) Marcus tried to assassinate Caesar.

- (a) man(marcus)
- (b) roman(marcus)
- (c) $\forall X. man(X) \rightarrow person(X)$
- (d) ruler(caesar)
- (e) $\forall X. roman(x) \rightarrow loyal(X, caesar)$ $<math>\vee$ hate(X, caesar)
- (f) $\forall X \exists Y. loyal(X,Y)$
- (g) $\forall X \forall Y$. person(X) \land ruler(Y)
 - tryassasin(X,Y) $\rightarrow \neg$ loyal(X,Y)
- (h) tryassasin(marcus, caesar)

Convert to Clausal Form

- 1. man(marcus)
- 2. roman(marcus)
- 3. (¬man(X), person(X))
- 4. ruler(caesar)
- 5. (¬roman(X), loyal(X,caesar), hate(X,caesar))
- 6. (loyal(X,f(X))
- 7. (¬person(X), ¬ruler(Y), ¬tryassasin(X,Y), ¬loyal(X,Y))
- 8. tryassasin(marcus,caesar)

Resolution Proof

Types of Resolution

Resolution Strategies'. A Unit Resolution * Every resolution step must involve a Unit Clause, * Leads to a good speed up. * Incomplete in general. Le use the unit clause in every step may not get the result / proof the result. but > * Complete for Horn knowledge bases Input Resolution: * Every resolution step must involve a input Sentence (from the query or the Know ledge Base) -> Can not resolve from +00 derived clauses. * Always start with good clause, assuming that the knowledge Base -itself consistent, addition of the goal is expected to make it

-incosistent.

A So we start from the goal and keep on doing this rescalbion at each step at least one of the clauses should be original KB, or goal.

* In Horn chanse knowledge bases, Modus Ponens is a kind of input resolution Strategy. (P and TP XB resolvant B) * Incomplete in general. (if you try to solve from two derived clavees) * complete for Horn Knowledge bases.

The Generalization of input resolution which is complete is called Linear Resolution.

The Linear Resolution? * slight generalization of imput resolution * Alubu P and Q to be resolved together - either if P is in the original KB or if P is an ancestor of Q - in the sproof tree.

* Linear Resolution is complete.

Thank You!

Any Questions?

